If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+78w-16=0
a = 10; b = 78; c = -16;
Δ = b2-4ac
Δ = 782-4·10·(-16)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-82}{2*10}=\frac{-160}{20} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+82}{2*10}=\frac{4}{20} =1/5 $
| -2=x/2-5 | | t-2/2=1 | | 4/9y-1/3=1/4 | | x2-3x=2x2 | | 6/10=p/5 | | 7q-46+3q+6=90 | | 5(x-6)^2-125=0 | | 100+112+113+117+x=540 | | 5-8a=6 | | 3=4+n/9 | | 3200(0.045)(8)=a | | 5m=4m=72 | | 15b=5b-40 | | 8x–1=63 | | 7x+35x=18-45 | | x2+11=6x | | 20=2.5d-5 | | 10h-23=4 | | 14x=(2x+2) | | 2x+6=x-12 | | 2+y^2-3y=0 | | 1=0.3x-0.5x-6 | | 2x+31=2x-69 | | t÷5-4=15 | | 1a÷4+8=14 | | 1/8x+9=-4 | | F(x)=-2X^2-5X+2 | | x^2-12x+36000=0 | | a÷4+8=14 | | xX12-135=xX3=-9 | | 10(2+x=60 | | 3(5x(-)2)+4=11x-3-4 |